Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vet Med Sci ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151844

RESUMO

BACKGROUND: Infectious bronchitis virus (IBV) is classified as a highly contagious viral agent that causes acute respiratory, reproductive and renal system pathology in affected poultry farms. Molecular and serological investigations are crucial for the accurate diagnosis and management of IBV. OBJECTIVES: The purpose of this study was to determine the seroprevalence of IBV and to characterise the circulating IBV in poultry farms in Sabah Province, Malaysia. METHODS: To determine IBV antibodies, a total of 138 blood samples and 50 organ samples were collected from 10 commercial broiler flocks in 3 different farms by using the enzyme-linked immunosorbent assay (ELISA) (IDEXX Kit) and reverse transcription-polymerase chain reaction (RT-PCR) followed by sequencing. RESULTS: A total of 94.2% (130/138) of the samples were seropositive for IBV in the vaccinated flock, and 38% (52/138) of the birds was the IBV titre for infection. The selected seropositive samples for IBV were confirmed by RT-PCR, with 22% (11/50) being IBV positive amplified and sequenced by targeted highly conserved partial nucleocapsid (N) genes. Subsequently, phylogenetic analysis constructed using amplified sequences again exposed the presence of Connecticut, Massachusetts, and Chinese QX variants circulating in poultry farms in Sabah, Malaysia. CONCLUSIONS: The unexpectedly increasing mean titres in serology indicated that post infection of IBV and highly prevalent IBV in selected farms in this study. The sequencing and phylogenetic analysis revealed the presence of multiple IBV variants circulating in Malaysian chicken farms in Sabah, which further monitoring of genetic variation are needed to better understand the genetic diversity.

2.
Microorganisms ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677518

RESUMO

Tomato (Solanum lycopersicum L.) is a popular nutritious vegetable crop grown in Malaysia and other parts of the world. However, fungal diseases such as anthracnose pose significant threats to tomato production by reducing the fruit quality and food value of tomato, resulting in lower market prices of the crop globally. In the present study, the etiology of tomato anthracnose was investigated in commercial tomato farms in Sabah, Malaysia. A total of 22 fungal isolates were obtained from anthracnosed tomato fruits and identified as Colletotrichum species, using morphological characteristics. The phylogenetic relationships of multiple gene sequence alignments such as internal transcribed spacer (ITS), ß-tubulin (tub2), glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin (act), and calmodulin (cal), were adopted to accurately identify the Colletotrichum species as C. truncatum. The results of pathogenicity tests revealed that all C. truncatum isolates caused anthracnose disease symptoms on inoculated tomato fruits. To our knowledge, the present study is the first report of tomato anthracnose caused by C. truncatum in Malaysia. The findings of this study will be helpful in disease monitoring, and the development of strategies for effective control of anthracnose on tomato fruits.

3.
Molecules ; 28(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36677963

RESUMO

Herein, we report the green synthesis of flower-like carrageenan-silver nanoparticles (c-AgNPs) through a facile hydrothermal reaction at 90 °C for 2 h. The reduction of silver nitrate (AgNO3) to c-AgNPs was evident by the colour change of the solution from colourless to dark brown and further confirmed by a UV-Vis surface plasmon resonance (SPR) peak at ~420 nm. The FTIR spectra showed that the abundance of functional groups present in the carrageenan were responsible for the reduction and stabilisation of the c-AgNPs. The XRD pattern confirmed the crystalline nature and face-centred cubic structure of the c-AgNPs, while the EDX analysis showed the presence of a high composition of elemental silver (85.87 wt%). Interestingly, the morphological characterisations by SEM and FE-SEM revealed the formation of flower-like c-AgNPs composed of intercrossed and random lamellar petals of approximately 50 nm in thickness. The growth mechanism of flower-like c-AgNPs were elucidated based on the TEM and AFM analyses. The c-AgNPs displayed promising antibacterial properties against E. coli and S. aureus, with zones of inhibition ranging from 8.0 ± 0.0 to 11.7 ± 0.6 mm and 7.3 ± 0.6 to 9.7 ± 0.6 mm, respectively, as the concentration of c-AgNPs increased from 0.1 to 4 mg/mL.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus , Carragenina , Extratos Vegetais/química , Nanopartículas Metálicas/química , Escherichia coli , Química Verde , Prata , Antibacterianos/química
4.
Sci Rep ; 12(1): 18582, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329094

RESUMO

An electrochemical method for detecting the presence of zinc (Zn2+) ions in drinking water was developed using functionalized multi-walled carbon nanotubes (f-MWCNTs) and chitosan (CS). Numerous cylinder-shaped graphene molecules make up f-MWCNTs, which have a high mechanical and electrical conductivity. CS benefits from nanomaterials include biocompatibility, biodegradability, and low toxicity, which are excellent in capacity absorption of metal ions. Dangerous levels of metal ions such as zinc are currently present in drinking water as a result of human and natural activity. Zinc toxicity is associated with a variety of disorders, including Alzheimer's, Parkinson's, diabetes, and cancer. This study incorporated f-MWCNTs and CS with Prussian blue (PB) immobilised on a gold electrode (AuE). Several parameters, including as buffers, pH, scan rate, redox indicator, accumulation time, and volume, were optimised using the cyclic voltammetry (CV) method. According to the CV method, the optimal parameters were phosphate buffered saline (0.1 M, pH 2), 5 mM Prussian blue, 200 mVs-1 scan rate, and 5 s accumulation time. Under ideal circumstances, the differential pulse voltammetry (DPV) method was used to determine the Zn2+ ions concentration range of 0.2-7.0 ppm. The limit of detection (LOD) was 2.60 × 10-7 mol L-1 with a correlation coefficient of R2 = 0.9777. The recovery rate of the developed sensor (f-MWCNTs/CS/PB/AuE) ranged from 95.78 to 98.96%. The developed sensor showed a variety of advantages for detecting Zn2+ in drinking water, including a quick setup process, quick detection, high sensitivity, and mobility. This study developed the essential sensor for monitoring Zn2+ levels in drinking water in the future.


Assuntos
Quitosana , Água Potável , Nanotubos de Carbono , Humanos , Quitosana/química , Nanotubos de Carbono/química , Zinco , Técnicas Eletroquímicas/métodos , Eletrodos , Íons
5.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234664

RESUMO

The current investigation deals with the application of a one-pot system to facilitate the production of cellulose nanocrystals (CNCs) from banana peel by a combination of microwave pre-treatment and mild oxidative hydrolysis with hydrogen peroxide (H2O2, 0-30 wt%) and sulfuric acid (H2SO4, 0-10%). H2O2 causes decolorization of the banana peel suspension from dark brown to light yellow, while further treatment with H2SO4 produces a white suspension, indicating successful removal of the non-cellulosic components from the banana peel. This finding was further supported by Fourier Transform Infrared (FTIR) spectroscopic analysis, which showed the gradual disappearance of lignin and hemicellulose peaks with increasing H2O2 and H2SO4 concentrations. The CNCs has considerably high crystallinity, with the highest crystallinity (~85%) being obtained at 6% H2SO4. Therefore, CNCs obtained at 6% H2SO4 were selected for further characterization. Scanning Electron Microscope (SEM) analysis confirmed the disintegration of the cellulose fibres into small fragments after hydrolysis. Transmission Electron Microscope (TEM) and Atomic Force Microscope (AFM) analyses revealed the spherical shape of the CNCs with an average size of approximately 20 nm. The CNCs have good stability with zeta potential of -42.9 mV. Findings from this study suggest that the combination of microwave pre-treatment and oxidative hydrolysis with 30 wt% H2O2 and 6% H2SO4, which is about 11 times lower than the commonly used H2SO4 concentration, is proven effective for the isolation of CNCs from banana peel. These observations are expected to provide insight into a facile and environmentally benign alternative to the conventional CNCs isolation method, using abundant and underutilized agricultural waste as feedstock.

6.
Biology (Basel) ; 11(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36138787

RESUMO

Advances in data acquisition via high resolution genomic, transcriptomic, proteomic and metabolomic platforms have driven the discovery of the underlying factors associated with metabolic disorders (MD) and led to interventions that target the underlying genetic causes as well as lifestyle changes and dietary regulation. The review focuses on fourteen of the most widely studied inherited MD, which are familial hypercholesterolemia, Gaucher disease, Hunter syndrome, Krabbe disease, Maple syrup urine disease, Metachromatic leukodystrophy, Mitochondrial encephalopathy lactic acidosis stroke-like episodes (MELAS), Niemann-Pick disease, Phenylketonuria (PKU), Porphyria, Tay-Sachs disease, Wilson's disease, Familial hypertriglyceridemia (F-HTG) and Galactosemia based on genome wide association studies, epigenetic factors, transcript regulation, post-translational genetic modifications and biomarker discovery through metabolomic studies. We will delve into the current approaches being undertaken to analyze metadata using bioinformatic approaches and the emerging interventions using genome editing platforms as applied to animal models.

7.
Membranes (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323762

RESUMO

Extensive research and development in the production of nanocellulose production, a green, bio-based, and renewable biomaterial has paved the way for the development of advanced functional materials for a multitude of applications. From a membrane technology perspective, the exceptional mechanical strength, high crystallinity, tunable surface chemistry, and anti-fouling behavior of nanocellulose, manifested from its structural and nanodimensional properties are particularly attractive. Thus, an opportunity has emerged to exploit these features to develop nanocellulose-based membranes for environmental applications. This review provides insights into the prospect of nanocellulose as a matrix or as an additive to enhance membrane performance in water filtration, environmental remediation, and the development of pollutant sensors and energy devices, focusing on the most recent progress from 2017 to 2022. A brief overview of the strategies to tailor the nanocellulose surface chemistry for the effective removal of specific pollutants and nanocellulose-based membrane fabrication approaches are also presented. The major challenges and future directions associated with the environmental applications of nanocellulose-based membranes are put into perspective, with primary emphasis on advanced multifunctional membranes.

8.
Vet Sci ; 8(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34822646

RESUMO

Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.

9.
Plants (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206201

RESUMO

Protecting food crops from viral pathogens is a significant challenge for agriculture. An integral approach to genome-editing, known as CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and CRISPR associated protein 9), is used to produce virus-resistant cultivars. The CRISPR/Cas9 tool is an essential part of modern plant breeding due to its attractive features. Advances in plant breeding programs due to the incorporation of Cas9 have enabled the development of cultivars with heritable resistance to plant viruses. The resistance to viral DNA and RNA is generally provided using the Cas9 endonuclease and sgRNAs (single-guide RNAs) complex, targeting particular virus and host plant genomes by interrupting the viral cleavage or altering the plant host genome, thus reducing the replication ability of the virus. In this review, the CRISPR/Cas9 system and its application to staple food crops resistance against several destructive plant viruses are briefly described. We outline the key findings of recent Cas9 applications, including enhanced virus resistance, genetic mechanisms, research strategies, and challenges in economically important and globally cultivated food crop species. The research outcome of this emerging molecular technology can extend the development of agriculture and food security. We also describe the information gaps and address the unanswered concerns relating to plant viral resistance mediated by CRISPR/Cas9.

10.
Mol Biol Rep ; 48(4): 3285-3301, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33880673

RESUMO

Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin-Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.


Assuntos
Catecol Oxidase/metabolismo , Celulase/metabolismo , Lignina/metabolismo , Filogenia , Trichoderma/classificação , Catecol Oxidase/genética , Celulase/genética , Celulose/metabolismo , DNA Ribossômico/genética , Regulação Fúngica da Expressão Gênica , Malásia , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , Microbiologia do Solo , Amido/metabolismo , Trichoderma/enzimologia , Trichoderma/genética
11.
Vet Sci ; 8(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809420

RESUMO

Infectious bronchitis virus (IBV) is a major economic problem in commercial chicken farms with acute multiple-system infection, especially in respiratory and urogenital systems. A live-attenuated and killed vaccine is currently immunized to control IBV infection; however, repeated outbreaks occur in both unvaccinated and vaccinated birds due to the choice of inadequate vaccine candidates and continuous emergence of novel infectious bronchitis (IB) variants and failure of vaccination. However, similar clinical signs were shown in different respiratory diseases that are essential to improving the diagnostic assay to detect IBV infections. Various risk factors involved in the failure of IB vaccination, such as various routes of application of vaccination, the interval between vaccinations, and challenge with various possible immunosuppression of birds are reviewed. The review article also highlights and updates factors affecting the diagnosis of IBV disease in the poultry industry with differential diagnosis to find the nature of infections compared with non-IBV diseases. Therefore, it is essential to monitor the common reasons for failed IBV vaccinations with preventive action, and proper diagnostic facilities for identifying the infective stage, leading to earlier control and reduced economic losses from IBV disease.

12.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924923

RESUMO

The present study reported a facile method for the determination of melamine in milk powder products based on the aggregation of reactant-free 5 nm gold nanoparticles (AuNPs). The strong electrostatic attraction between the positively charged exocyclic amine groups present in the melamine molecule and the negatively charged ions bound to the AuNPs induced aggregation of the AuNPs, resulting in visible color changes that could be seen with the naked eye and monitored by ultraviolet-visible (UV-Vis) absorbance spectra. The method shows high sensitivity with detection limits of 1 × 10-9 M for visual detection and 1 × 10-11 M for UV-Vis analysis, which is far below the safety limit of melamine ingestion in infant formula (1 ppm = 7.9 × 10-6 M) and the detection limit acquired by most AuNP-based melamine detection methods. Good recoveries were obtained over the range of 94.7-95.5% with a relative standard deviation of mean recovery (RSD) ranging from 1.40 to 5.81. The method provides a simple, feasible, fast and real-time detection of melamine adulterants in infant formula by the naked eye, without the aid of advanced instruments.

13.
J Fungi (Basel) ; 8(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049981

RESUMO

Mushrooms are popular due to the nutrition contents in the fruit bodies and are relatively easy to cultivate. Mushrooms from the white-rot fungi group can be cultivated on agricultural biomass such as sawdust, paddy straw, wheat straw, oil palm frond, oil palm empty fruit bunches, oil palm bark, corn silage, corn cobs, banana leaves, coconut husk, pineapple peel, pineapple leaves, cotton stalk, sugarcane bagasse and various other agricultural biomass. Mushrooms are exceptional decomposers that play important roles in the food web to balance the ecosystems. They can uptake various minerals, including essential and non-essential minerals provided by the substrates. However, the agricultural biomass used for mushroom cultivation is sometimes polluted by heavy metals because of the increased anthropogenic activities occurring in line with urbanisation. Due to their role in mycoremediation, the mushrooms also absorb pollutants from the substrates into their fruit bodies. This article reviews the sources of agricultural biomass for mushroom cultivation that could track how the environmental heavy metals are accumulated and translocated into mushroom fruit bodies. This review also discusses the possible health risks from prolonged uptakes of heavy metal-contaminated mushrooms to highlight the importance of early contaminants' detection for food security.

14.
Drug Chem Toxicol ; 44(5): 447-457, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31020858

RESUMO

A novel nanocomposite film of chitosan/graphene oxide (CHIT/GO)/multi-walled carbon nanotubes (MWCNTs)/gold nanoparticles (AuNPs) was applied to fabricate glassy carbon electrode (CHIT/GO/MWCNTs/AuNPs/GCE) for the determination of Tartrazine (TZ), synthetic dyes in food products. The electrochemical sensors found it to be highly sensitive by combining the signal amplification properties of GO and the excellent electronic and antifouling properties of MWCNTs. The CHIT/GO/MWCNTs/AuNPs/GCE exhibited as superior electron transfer materials and possesses intercalation properties which provide synergistic influence on the increment of the current signals. The optimum conditions were found at pH 7, 30 s, and 0.3 Vs-1. The modified GCE obtained with a linear response ranging from 10 to 100 mg mL-1 (r2 = 0.99037) with a sensitivity of 0.018 µA µM-1. The limit of detection (LOD) and quantification obtained were 1.45 and 4.83 mg mL-1, respectively. The determination of TZ in spiked samples was reliable with recovery percentage from 94.52 to 109.0%. The developed sensor successfully tested in the determination of TZ analyte in commercial candy, jelly, and soft drinks with acceptable results.


Assuntos
Técnicas Eletroquímicas/métodos , Corantes de Alimentos/análise , Nanocompostos/química , Tartrazina/análise , Quitosana/química , Eletrodos , Ouro/química , Grafite/química , Limite de Detecção , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Reprodutibilidade dos Testes
15.
Sensors (Basel) ; 20(22)2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33202533

RESUMO

In the present study, indium tin oxide (ITO) was used as a transparent working electrode for the development of an electrochemical sensor for the detection of mercury (II) ions (Hg2+). The electrode was modified by direct electrodeposition of polyaniline (PANI), multiwalled carbon nanotubes (MWCNTs) and gold nanoparticles (AuNPs) followed by optimization of the analyte and operating conditions, aiming to improve the selectivity, sensitivity and reliability of the electrode for mercury detection. Successful immobilization of the PANI and nanomaterials (MWCNTs and AuNPs) on the ITO electrode was confirmed by Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. The optimum conditions for mercury detection using the modified ITO electrode were pH 7.0 of Tris-HCl buffer (50 mM) in the presence of 1 mM methylene blue (MB) as a redox indicator, a scan rate of 0.10 V·s-1 and a 70 s interaction time. The electrochemical behavior of the modified electrode under the optimized conditions indicated a high reproducibility and high sensitivity of mercury detection. It is therefore suggested that the PANI/MWCNT/AuNP-modified ITO electrode could be a promising material for the development of on-site mercury detection tools for applications in fields such as diagnostics, the environment, safety and security controls or other industries.

16.
Data Brief ; 23: 103796, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372442

RESUMO

Members of the genus Tinctoporellus, which belong to the wood-degrading basidiomycetes, possess the ability to synthesize an array of industrially potent enzymes and metabolites. Here, we present the draft genome sequence of the species Tinctoporellus epimiltinus strain RS1, which is the first to represent its genus. The genome was sequenced using Illumina's 2 × 150 bp paired-end Nextera protocol. The draft genome assembly was 46.2 Mb in size consisting of 13,791 protein coding genes. Identification of carbohydrate active enzymes and laccases from the data may be useful in order to harness the metabolic potentials of the fungi. The data can be accessed at ENA under the accession number FTLJ00000000.

17.
Food Res Int ; 115: 105-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599921

RESUMO

Fruits are important food commodities that can be consumed either raw or processed and are valued for their taste, nutrients, and healthy compounds. Mangifera pajang Kosterm (bambangan) is an underutilized fruit found in Malaysia (Sabah and Sarawak), Brunei, and Indonesia (Kalimantan). It is highly fibrous and juicy with an aromatic flavour and strong smell. In recent years, bambangan fruit has been gaining more attention due to its high fibre, carotenoid content, antioxidant properties, phytochemicals, and medicinal usages. Therefore, the production, trade, and consumption of bambangan fruit could be increased significantly, both domestically and internationally, because of its nutritional value. The identification and quantification of bioactive compounds in bambangan fruit has led to considerable interest among scientists. Bambangan fruit and its waste, especially its seeds and peels, are considered cheap sources of valuable food and are considered nutraceutical ingredients that could be used to prevent various diseases. The use of bambangan fruit waste co-products for the production of bioactive components is an important step towards sustainable development. This is an updated report on the nutritional composition and health-promoting phytochemicals of bambangan fruit and its co-products that explores their potential utilization. This review reveals that bambangan fruit and its co-products could be used as ingredients of dietary fibre powder or could be incorporated into food products (biscuits and macaroni) to enhance their nutraceutical properties.


Assuntos
Frutas/química , Mangifera/química , Compostos Fitoquímicos/análise , Antioxidantes/análise , Brunei , Fibras na Dieta/análise , Suplementos Nutricionais , Humanos , Indonésia , Malásia , Valor Nutritivo , Extratos Vegetais/análise , Sementes/química , Resíduos/análise
18.
Biotechnol Rep (Amst) ; 13: 1-7, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28352555

RESUMO

Oil palm fibres are easy to degrade, eco-friendly in nature and once composted, they can be categorized under nutrient-enriched biocompost. Biocompost is not only a good biofertilizer but also a good biocontrol agent against soil-borne pathogens. In this research, experimental works on the composting of empty fruit bunches (EFB) from the oil palm industry were conducted using two potential Trichoderma strains. Analysis of pH initially found the soils to be slightly acidic. However, after composting, the soils were found to be alkaline. Trichoderma propagules increased by 72% in the soils compared to other fungi. Soil electrical conductivity was found to be 50.40 µS/cm for compost A, 42.10 µS/cm for compost B and 40.11 µS/cm for the control. The highest C:N ratio was obtained for compost A at 3.33, followed by compost B at 2.79, and then the control at 1.55. The highest percentages of nitrogen (N), phosphorus (P), and potassium (K) were found in compost A (0.91:2.13:6.68), which was followed by compost B (0.46:0.83:5.85) and then the control (0.32:0.26:5.76). Thus, the biocomposting of oil palm fibres shows great potential for enhancing soil micronutrient, plant growth performance, and crop yield production.

19.
Crit Rev Anal Chem ; 47(4): 309-324, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28128965

RESUMO

Tartrazine is an azo food dye, which is orange-colored and water soluble. It is usually used in foods, pharmaceuticals, cosmetics, and textiles. Tartrazine has the potential to cause an adverse health effect on humans, such as hyperactivity in children, allergy, and asthma. Joint FAO/WHO Expert Committee on Food Additive and EU Scientific Committee for Food have standardized the acceptable daily intake for tartrazine that is 7.5 mg kg-1 body weight. Many researchers have detected the presence of tartrazine for monitoring the quality and safety of food products. In this review paper, we highlighted various tartrazine detection and extraction methods. Some of the analytical methods are available such as high-performance liquid chromatography, electrochemical sensor, thin-layer chromatography, spectrophotometry, capillary electrophoresis, and liquid chromatography-tandem mass spectrometry. Also, we discuss following extraction steps: liquid-liquid extraction, solid-phase extraction, membrane filtration, cloud point extraction, and other extraction method. In addition, a brief overview is presented explaining the synthesis process and metabolism of tartrazine and the maximum permitted level in different countries. This review paper will give an insight into different extraction and analytical methods for the determination of tartrazine in healthy foods, which will attract the attention of public toward food safety and quality, and also the interest of food industry and government bodies.


Assuntos
Fracionamento Químico/métodos , Técnicas de Química Analítica/métodos , Análise de Alimentos/métodos , Corantes de Alimentos/análise , Corantes de Alimentos/isolamento & purificação , Tartrazina/análise , Tartrazina/isolamento & purificação , Corantes de Alimentos/metabolismo , Corantes de Alimentos/toxicidade , Humanos , Tartrazina/metabolismo , Tartrazina/toxicidade
20.
Biosensors (Basel) ; 6(3)2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27376338

RESUMO

Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD⁺ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique.


Assuntos
Técnicas Biossensoriais , Peixes , Análise de Alimentos , Formaldeído , Animais , Quitosana , Técnicas Eletroquímicas , Reprodutibilidade dos Testes , Atum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA